1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
$$\int {{{dx} \over {\cos x - \sin x}}} $$ is equal to
A
$${1 \over {\sqrt 2 }}\log \left| {\tan \left( {{x \over 2} + {{3\pi } \over 8}} \right)} \right| + C$$
B
$${1 \over {\sqrt 2 }}\log \left| {\cot \left( {{x \over 2}} \right)} \right| + C$$
C
$${1 \over {\sqrt 2 }}\log \left| {\tan \left( {{x \over 2} - {{3\pi } \over 8}} \right)} \right| + C$$
D
$$\,{1 \over {\sqrt 2 }}\log \left| {\tan \left( {{x \over 2} - {\pi \over 8}} \right)} \right| + C$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
The eccentricity of an ellipse, with its centre at the origin, is $${1 \over 2}$$. If one of the directrices is $$x=4$$, then the equation of the ellipse is :
A
$$4{x^2} + 3{y^2} = 1$$
B
$$3{x^2} + 4{y^2} = 12$$
C
$$4{x^2} + 3{y^2} = 12$$
D
$$3{x^2} + 4{y^2} = 1$$
3
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
The value of $$\int\limits_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} $$ is
A
$${1 \over 3}$$
B
$${14 \over 3}$$
C
$${7 \over 3}$$
D
$${28 \over 3}$$
4
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If $$\int\limits_0^\pi {xf\left( {\sin x} \right)dx = A\int\limits_0^{\pi /2} {f\left( {\sin x} \right)dx,} } $$ then $$A$$ is
A
$$2\pi $$
B
$$\pi $$
C
$${\pi \over 4}$$
D
$$0$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12