This chapter is currently out of syllabus
1
AIEEE 2003
+4
-1
Out of Syllabus
The sum of the radii of inscribed and circumscribed circles for an $$n$$ sided regular polygon of side $$a,$$ is :
A
$${a \over 4}\cot \left( {{\pi \over {2n}}} \right)$$
B
$$a\cot \left( {{\pi \over {n}}} \right)$$
C
$${a \over 2}\cot \left( {{\pi \over {2n}}} \right)$$
D
$$a\cot \left( {{\pi \over {2n}}} \right)$$
2
AIEEE 2003
+4
-1
Out of Syllabus
In a triangle $$ABC$$, medians $$AD$$ and $$BE$$ are drawn. If $$AD=4$$,
$$\angle DAB = {\pi \over 6}$$ and $$\angle ABE = {\pi \over 3}$$, then the area of the $$\angle \Delta ABC$$ is :
A
$${{64} \over 3}$$
B
$${8 \over 3}$$
C
$${{16} \over 3}$$
D
$${{32} \over {3\sqrt 3 }}$$
3
AIEEE 2003
+4
-1
Out of Syllabus
If in a $$\Delta ABC$$ $$a\,{\cos ^2}\left( {{C \over 2}} \right) + c\,{\cos ^2}\left( {{A \over 2}} \right) = {{3b} \over 2},$$ then the sides $$a, b$$ and $$c$$ :
A
satisfy $$a+b=c$$
B
are in A.P
C
are in G.P
D
are in H.P
4
AIEEE 2002
+4
-1
Out of Syllabus
The sides of a triangle are $$3x + 4y,$$ $$4x + 3y$$ and $$5x + 5y$$ where $$x$$, $$y>0$$ then the triangle is :
A
right angled
B
obtuse angled
C
equilateral
D
none of these
EXAM MAP
Medical
NEET