This chapter is currently out of syllabus
1
AIEEE 2004
+4
-1
Out of Syllabus
The sides of a triangle are $$\sin \alpha ,\,\cos \alpha$$ and $$\sqrt {1 + \sin \alpha \cos \alpha }$$ for some $$0 < \alpha < {\pi \over 2}$$. Then the greatest angle of the triangle is :
A
$${150^ \circ }$$
B
$${90^ \circ }$$
C
$${120^ \circ }$$
D
$${60^ \circ }$$
2
AIEEE 2003
+4
-1
Out of Syllabus
The sum of the radii of inscribed and circumscribed circles for an $$n$$ sided regular polygon of side $$a,$$ is :
A
$${a \over 4}\cot \left( {{\pi \over {2n}}} \right)$$
B
$$a\cot \left( {{\pi \over {n}}} \right)$$
C
$${a \over 2}\cot \left( {{\pi \over {2n}}} \right)$$
D
$$a\cot \left( {{\pi \over {2n}}} \right)$$
3
AIEEE 2003
+4
-1
Out of Syllabus
In a triangle $$ABC$$, medians $$AD$$ and $$BE$$ are drawn. If $$AD=4$$,
$$\angle DAB = {\pi \over 6}$$ and $$\angle ABE = {\pi \over 3}$$, then the area of the $$\angle \Delta ABC$$ is :
A
$${{64} \over 3}$$
B
$${8 \over 3}$$
C
$${{16} \over 3}$$
D
$${{32} \over {3\sqrt 3 }}$$
4
AIEEE 2003
+4
-1
Out of Syllabus
If in a $$\Delta ABC$$ $$a\,{\cos ^2}\left( {{C \over 2}} \right) + c\,{\cos ^2}\left( {{A \over 2}} \right) = {{3b} \over 2},$$ then the sides $$a, b$$ and $$c$$ :
A
satisfy $$a+b=c$$
B
are in A.P
C
are in G.P
D
are in H.P
EXAM MAP
Medical
NEET