In a $$\Delta PQR,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} $$ If $$3{\mkern 1mu} \sin {\mkern 1mu} P + 4{\mkern 1mu} \cos {\mkern 1mu} Q = 6$$ and $$4\sin Q + 3\cos P = 1,$$ then the angle R is equal to :
A
$${{5\pi } \over 6}$$
B
$${{\pi } \over 6}$$
C
$${{\pi } \over 4}$$
D
$${{3\pi } \over 4}$$
Explanation
Given $$3$$ $$\sin \,P + 4\cos Q = 6$$ $$\,\,\,\,\,\,\,\,...\left( i \right)$$
$$4\sin Q + 3\cos P = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right)$$