Two reactions are given below:

$$\begin{aligned} & 2 \mathrm{Fe}_{(\mathrm{s})}+\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_2 \mathrm{O}_{3(\mathrm{~s})}, \Delta \mathrm{H}^{\circ}=-822 \mathrm{~kJ} / \mathrm{mol} \\ & \mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}, \Delta \mathrm{H}^{\circ}=-110 \mathrm{~kJ} / \mathrm{mol} \end{aligned}$$

Then enthalpy change for following reaction $$3 \mathrm{C}_{(\mathrm{s})}+\mathrm{Fe}_2 \mathrm{O}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{(\mathrm{g})}$$ is _______ $$\mathrm{kJ} / \mathrm{mol}$$.

An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path $$\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A}$$ as shown in the diagram above. The total work done in the process is __________ J.

Standard enthalpy of vapourisation for $$\mathrm{CCl}_4$$ is $$30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$$. Heat required for vapourisation of $$284 \mathrm{~g}$$ of $$\mathrm{CCl}_4$$ at constant temperature is ________ $$\mathrm{kJ}$$.

(Given molar mass in $$\mathrm{g} \mathrm{mol}^{-1} ; \mathrm{C}=12, \mathrm{Cl}=35.5$$)

For a certain thermochemical reaction $$\mathrm{M} \rightarrow \mathrm{N}$$ at $$\mathrm{T}=400 \mathrm{~K}, \Delta \mathrm{H}^{\ominus}=77.2 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta \mathrm{S}=122 \mathrm{~JK}^{-1}, \log$$ equilibrium constant $$(\log K)$$ is __________ $$\times 10^{-1}$$.