A gas (Molar mass = 280 $$\mathrm{~g} \mathrm{~mol}^{-1}$$) was burnt in excess $$\mathrm{O}_{2}$$ in a constant volume calorimeter and during combustion the temperature of calorimeter increased from $$298.0 \mathrm{~K}$$ to $$298.45$$ $$\mathrm{K}$$. If the heat capacity of calorimeter is $$2.5 \mathrm{~kJ} \mathrm{~K}^{-1}$$ and enthalpy of combustion of gas is $$9 \mathrm{~kJ} \mathrm{~mol}^{-1}$$ then amount of gas burnt is _____________ g. (Nearest Integer)
The molar heat capacity for an ideal gas at constant pressure is $$20.785 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$$. The change in internal energy is $$5000 \mathrm{~J}$$ upon heating it from $$300 \mathrm{~K}$$ to $$500 \mathrm{~K}$$. The number of moles of the gas at constant volume is ____________. [Nearest integer] (Given: $$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$$)
For the reaction
$$\mathrm{H}_{2} \mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})$$
$$\Delta U=-59.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$$ at $$27^{\circ} \mathrm{C}$$.
The enthalpy change for the above reaction is ($$-$$) __________ $$\mathrm{kJ} \,\mathrm{mol}^{-1}$$ [nearest integer]
Given: $$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$$.
$$2.4 \mathrm{~g}$$ coal is burnt in a bomb calorimeter in excess of oxygen at $$298 \mathrm{~K}$$ and $$1 \mathrm{~atm}$$ pressure. The temperature of the calorimeter rises from $$298 \mathrm{~K}$$ to $$300 \mathrm{~K}$$. The enthalpy change during the combustion of coal is $$-x \mathrm{~kJ} \mathrm{~mol}^{-1}$$. The value of $$x$$ is ___________. (Nearest Integer)
(Given : Heat capacity of bomb calorimeter $$20.0 \mathrm{~kJ} \mathrm{~K}^{-1}$$. Assume coal to be pure carbon)