Resonance in $\mathrm{X}_2 \mathrm{Y}$ can be represented as
The enthalpy of formation of $X_2Y$ $ \left(X = X(g) + \frac{1}{2} Y = Y(g) \rightarrow X_2Y(g) \right) $ is 80 kJ mol$^{-1}$. The magnitude of resonance energy of $X_2Y$ is __ kJ mol$^{-1}$ (nearest integer value).
Given: Bond energies of $X \equiv X$, $X = X$, $Y = Y$ and $X = Y$ are 940, 410, 500, and 602 kJ mol$^{-1}$ respectively.
valence $X$: 3, $Y$: 2
Given :
$$ \begin{aligned} & \left.\Delta \mathrm{H}^{\ominus}{ }_{\text {sub }}[\mathrm{C} \text { (graphite })\right]=710 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_{\mathrm{C}-\mathrm{H}} \mathrm{H}^{\ominus}=414 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_{\mathrm{H}-\mathrm{H}} \mathrm{H}^{\ominus}=436 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_{\mathrm{C}}=\mathrm{C} \mathrm{H}^{\ominus}=611 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
The $\Delta \mathrm{H}_{\mathrm{f}} \ominus$ for $\mathrm{CH}_2=\mathrm{CH}_2$ is_________ $\mathrm{kJ} \mathrm{mol}^{-1}$ (nearest integer value)
Consider the following data :
Heat of formation of $\mathrm{CO}_2(\mathrm{g})=-393.5 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
Heat of formation of $\mathrm{H}_2 \mathrm{O}(\mathrm{l})=-286.0 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
Heat of combustion of benzene $=-3267.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The heat of formation of benzene is __________ $\mathrm{kJ} \mathrm{mol}^{-1}$. (Nearest integer)
The formation enthalpies, $\Delta \mathrm{H}_{\mathrm{f}}^{\ominus}$ for $\mathrm{H}_{(\mathrm{g})}$ and $\mathrm{O}_{(\mathrm{g})}$ are 220.0 and $250.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively, at 298.15 K , and $\Delta \mathrm{H}_{\mathrm{f}}^{\ominus}$ for $\mathrm{H}_2 \mathrm{O}_{(\mathrm{g})}$ is $-242.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at the same temperature. The average bond enthalpy of the $\mathrm{O}-\mathrm{H}$ bond in water at 298.15 K is _______ $\mathrm{kJ} \mathrm{~mol}^{-1}$ (nearest integer).