If three moles of an ideal gas at $$300 \mathrm{~K}$$ expand isothermally from $$30 \mathrm{~dm}^3$$ to $$45 \mathrm{~dm}^3$$ against a constant opposing pressure of $$80 \mathrm{~kPa}$$, then the amount of heat transferred is _______ J.

$$\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB} . \Delta H_{f}^{0}=-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$$

$$\mathrm{AB}, \mathrm{A}_{2}$$ and $$\mathrm{B}_{2}$$ are diatomic molecules. If the bond enthalpies of $$\mathrm{A}_{2}, \mathrm{~B}_{2}$$ and $$\mathrm{AB}$$ are in the ratio $$1: 0.5: 1$$, then the bond enthalpy of $$\mathrm{A}_{2}$$ is ____________ $$\mathrm{kJ} ~\mathrm{mol}^{-1}$$ (Nearest integer)

One mole of an ideal gas at $$350 \mathrm{~K}$$ is in a $$2.0 \mathrm{~L}$$ vessel of thermally conducting walls, which are in contact with the surroundings. It undergoes isothermal reversible expansion from 2.0 L to $$3.0 \mathrm{~L}$$ against a constant pressure of $$4 \mathrm{~atm}$$. The change in entropy of the surroundings ( $$\Delta \mathrm{S})$$ is ___________ $$\mathrm{J} \mathrm{K}^{-1}$$ (Nearest integer)

Given: $$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$$.