Consider the graph of Gibbs free energy G vs Extent of reaction. The number of statement/s from the following which are true with respect to points (a), (b) and (c) is _________
A. Reaction is spontaneous at (a) and (b)
B. Reaction is at equilibrium at point (b) and non-spontaneous at point (c)
C. Reaction is spontaneous at (a) and non-spontaneous at (c)
D. Reaction is non-spontaneous at (a) and (b)
The value of $$\log \mathrm{K}$$ for the reaction $$\mathrm{A} \rightleftharpoons \mathrm{B}$$ at $$298 \mathrm{~K}$$ is ___________. (Nearest integer)
Given: $$\Delta \mathrm{H}^{\circ}=-54.07 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$\Delta \mathrm{S}^{\circ}=10 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$$
(Take $$2.303 \times 8.314 \times 298=5705$$ )
$$0.3 \mathrm{~g}$$ of ethane undergoes combustion at $$27^{\circ} \mathrm{C}$$ in a bomb calorimeter. The temperature of calorimeter system (including the water) is found to rise by $$0.5^{\circ} \mathrm{C}$$. The heat evolved during combustion of ethane at constant pressure is ____________ $$\mathrm{kJ} ~\mathrm{mol}{ }^{-1}$$. (Nearest integer)
[Given : The heat capacity of the calorimeter system is $$20 \mathrm{~kJ} \mathrm{~K}^{-1}, \mathrm{R}=8.3 ~\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$$.
Assume ideal gas behaviour.
Atomic mass of $$\mathrm{C}$$ and $$\mathrm{H}$$ are 12 and $$1 \mathrm{~g} \mathrm{~mol}^{-1}$$ respectively]
At $$25^{\circ} \mathrm{C}$$, the enthalpy of the following processes are given :
$$\mathrm{H_2(g)+O_2(g)}$$ | $$\to$$ | $$2\mathrm{OH(g)}$$ | $$\mathrm{\Delta H^\circ=78~kJ~mol^{-1}}$$ |
---|---|---|---|
$$\mathrm{H_2(g)+\frac{1}{2}O_2(g)}$$ | $$\to$$ | $$\mathrm{H_2O(g)}$$ | $$\mathrm{\Delta H^\circ=-242~kJ~mol^{-1}}$$ |
$$\mathrm{H_2(g)}$$ | $$\to$$ | $$\mathrm{2H(g)}$$ | $$\mathrm{\Delta H^\circ=436~kJ~mol^{-1}}$$ |
$$\frac{1}{2}\mathrm{O_2(g)}$$ | $$\to$$ | $$\mathrm{O(g)}$$ | $$\mathrm{\Delta H^\circ=249~kJ~mol^{-1}}$$ |
What would be the value of X for the following reaction ? _____________ (Nearest integer)
$$\mathrm{H_2O(g)\to H(g)+OH(g)~\Delta H^\circ=X~kJ~mol^{-1}}$$