Consider the figure provided.
$$1 \mathrm{~mol}$$ of an ideal gas is kept in a cylinder, fitted with a piston, at the position A, at $$18^{\circ} \mathrm{C}$$. If the piston is moved to position $$\mathrm{B}$$, keeping the temperature unchanged, then '$$\mathrm{x}$$' $$\mathrm{L}$$ atm work is done in this reversible process.
$$\mathrm{x}=$$ ________ $$\mathrm{L}$$ atm. (nearest integer)
[Given : Absolute temperature $$={ }^{\circ} \mathrm{C}+273.15, \mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1}$$]
For the reaction at $$298 \mathrm{~K}, 2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}, \Delta \mathrm{H}=400 \mathrm{~kJ} \mathrm{~mol}^{-1}$$ and $$\Delta S=0.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$$. The reaction will become spontaneous above __________ $$\mathrm{K}$$.
An ideal gas, $$\overline{\mathrm{C}}_{\mathrm{v}}=\frac{5}{2} \mathrm{R}$$, is expanded adiabatically against a constant pressure of 1 atm untill it doubles in volume. If the initial temperature and pressure is $$298 \mathrm{~K}$$ and $$5 \mathrm{~atm}$$, respectively then the final temperature is _________ $$\mathrm{K}$$ (nearest integer).
[$$\overline{\mathrm{c}}_{\mathrm{v}}$$ is the molar heat capacity at constant volume]
Combustion of 1 mole of benzene is expressed at
$$\mathrm{C}_6 \mathrm{H}_6(\mathrm{l})+\frac{15}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_2(\mathrm{~g})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{l}) \text {. }$$
The standard enthalpy of combustion of $$2 \mathrm{~mol}$$ of benzene is $$-^{\prime} x^{\prime} \mathrm{kJ}$$. $$x=$$ __________.
Given :
1. standard Enthalpy of formation of $$1 \mathrm{~mol}$$ of $$\mathrm{C}_6 \mathrm{H}_6(\mathrm{l})$$, for the reaction $$6 \mathrm{C}$$ (graphite) $$+3 \mathrm{H}_2(\mathrm{g}) \rightarrow \mathrm{C}_6 \mathrm{H}_6(\mathrm{l})$$ is $$48.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$$.
2. Standard Enthalpy of formation of $$1 \mathrm{~mol}$$ of $$\mathrm{CO}_2(\mathrm{g})$$, for the reaction $$\mathrm{C}$$ (graphite) $$+\mathrm{O}_2(\mathrm{g}) \rightarrow \mathrm{CO}_2(\mathrm{g})$$ is $$-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$$.
3. Standard and Enthalpy of formation of $$1 \mathrm{~mol}$$ of $$\mathrm{H}_2 \mathrm{O}(\mathrm{l})$$, for the reaction $$\mathrm{H}_2(\mathrm{g})+\frac{1}{2} \mathrm{O}_2(\mathrm{g}) \rightarrow \mathrm{H}_2 \mathrm{O}(\mathrm{l})$$ is $$-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$$.