Suppose $$y=y(x)$$ be the solution curve to the differential equation $$\frac{d y}{d x}-y=2-e^{-x}$$ such that $$\lim\limits_{x \rightarrow \infty} y(x)$$ is finite. If $$a$$ and $$b$$ are respectively the $$x$$ - and $$y$$-intercepts of the tangent to the curve at $$x=0$$, then the value of $$a-4 b$$ is equal to _____________.
Let a curve $$y=y(x)$$ pass through the point $$(3,3)$$ and the area of the region under this curve, above the $$x$$-axis and between the abscissae 3 and $$x(>3)$$ be $$\left(\frac{y}{x}\right)^{3}$$. If this curve also passes through the point $$(\alpha, 6 \sqrt{10})$$ in the first quadrant, then $$\alpha$$ is equal to ___________.
Let $$y=y(x)$$ be the solution of the differential equation
$$\frac{d y}{d x}=\frac{4 y^{3}+2 y x^{2}}{3 x y^{2}+x^{3}}, y(1)=1$$.
If for some $$n \in \mathbb{N}, y(2) \in[n-1, n)$$, then $$n$$ is equal to _____________.
Let y = y(x), x > 1, be the solution of the differential equation $$(x - 1){{dy} \over {dx}} + 2xy = {1 \over {x - 1}}$$, with $$y(2) = {{1 + {e^4}} \over {2{e^4}}}$$. If $$y(3) = {{{e^\alpha } + 1} \over {\beta {e^\alpha }}}$$, then the value of $$\alpha + \beta $$ is equal to _________.