1
JEE Main 2022 (Online) 26th July Evening Shift
Numerical
+4
-1 Suppose $$y=y(x)$$ be the solution curve to the differential equation $$\frac{d y}{d x}-y=2-e^{-x}$$ such that $$\lim\limits_{x \rightarrow \infty} y(x)$$ is finite. If $$a$$ and $$b$$ are respectively the $$x$$ - and $$y$$-intercepts of the tangent to the curve at $$x=0$$, then the value of $$a-4 b$$ is equal to _____________.

2
JEE Main 2022 (Online) 25th July Evening Shift
Numerical
+4
-1 Let $$y=y(x)$$ be the solution of the differential equation

$$\frac{d y}{d x}=\frac{4 y^{3}+2 y x^{2}}{3 x y^{2}+x^{3}}, y(1)=1$$.

If for some $$n \in \mathbb{N}, y(2) \in[n-1, n)$$, then $$n$$ is equal to _____________.

3
JEE Main 2022 (Online) 25th July Evening Shift
Numerical
+4
-1 Let $$f$$ be a twice differentiable function on $$\mathbb{R}$$. If $$f^{\prime}(0)=4$$ and $$f(x) + \int\limits_0^x {(x - t)f'(t)dt = \left( {{e^{2x}} + {e^{ - 2x}}} \right)\cos 2x + {2 \over a}x}$$, then $$(2 a+1)^{5}\, a^{2}$$ is equal to _______________.

4
JEE Main 2022 (Online) 29th June Evening Shift
Numerical
+4
-1 Let y = y(x), x > 1, be the solution of the differential equation $$(x - 1){{dy} \over {dx}} + 2xy = {1 \over {x - 1}}$$, with $$y(2) = {{1 + {e^4}} \over {2{e^4}}}$$. If $$y(3) = {{{e^\alpha } + 1} \over {\beta {e^\alpha }}}$$, then the value of $$\alpha + \beta$$ is equal to _________.

JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination