If the solution $$y(x)$$ of the given differential equation $$\left(e^y+1\right) \cos x \mathrm{~d} x+\mathrm{e}^y \sin x \mathrm{~d} y=0$$ passes through the point $$\left(\frac{\pi}{2}, 0\right)$$, then the value of $$e^{y\left(\frac{\pi}{6}\right)}$$ is equal to _________.
Let $$y=y(x)$$ be the solution of the differential equation
$$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x}{\left(1+x^2\right)^2} y=x \mathrm{e}^{\frac{1}{\left(1+x^2\right)}} ; y(0)=0.$$
Then the area enclosed by the curve $$f(x)=y(x) \mathrm{e}^{-\frac{1}{\left(1+x^2\right)}}$$ and the line $$y-x=4$$ is ________.
Let $$y=y(x)$$ be the solution of the differential equation $$(x+y+2)^2 d x=d y, y(0)=-2$$. Let the maximum and minimum values of the function $$y=y(x)$$ in $$\left[0, \frac{\pi}{3}\right]$$ be $$\alpha$$ and $$\beta$$, respectively. If $$(3 \alpha+\pi)^2+\beta^2=\gamma+\delta \sqrt{3}, \gamma, \delta \in \mathbb{Z}$$, then $$\gamma+\delta$$ equals _________.
Let the solution $$y=y(x)$$ of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}-y=1+4 \sin x$$ satisfy $$y(\pi)=1$$. Then $$y\left(\frac{\pi}{2}\right)+10$$ is equal to __________.