Javascript is required
1
JEE Main 2022 (Online) 29th June Morning Shift
Numerical
+4
-1 English
Hindi

Let y = y(x) be the solution of the differential equation $${{dy} \over {dx}} + {{\sqrt 2 y} \over {2{{\cos }^4}x - {{\cos }^2}x}} = x{e^{{{\tan }^{ - 1}}(\sqrt 2 \cot 2x)}},\,0 < x < {\pi \over 2}$$ with $$y\left( {{\pi \over 4}} \right) = {{{\pi ^2}} \over {32}}$$. If $$y\left( {{\pi \over 3}} \right) = {{{\pi ^2}} \over {18}}{e^{ - {{\tan }^{ - 1}}(\alpha )}}$$, then the value of 3$$\alpha$$2 is equal to ___________.

2
JEE Main 2022 (Online) 27th June Evening Shift
Numerical
+4
-1 English
Hindi

Let $$y = y(x)$$ be the solution of the differential equation $$(1 - {x^2})dy = \left( {xy + ({x^3} + 2)\sqrt {1 - {x^2}} } \right)dx, - 1 < x < 1$$, and $$y(0) = 0$$. If $$\int_{{{ - 1} \over 2}}^{{1 \over 2}} {\sqrt {1 - {x^2}} y(x)dx = k}$$, then k$$-$$1 is equal to _____________.

3
JEE Main 2022 (Online) 26th June Morning Shift
Numerical
+4
-1 English
Hindi
Bengali

Let the solution curve y = y(x) of the differential equation

$$(4 + {x^2})dy - 2x({x^2} + 3y + 4)dx = 0$$ pass through the origin. Then y(2) is equal to _____________.

4
JEE Main 2022 (Online) 26th June Morning Shift
Numerical
+4
-1 English
Hindi
Bengali

Let $$S = (0,2\pi ) - \left\{ {{\pi \over 2},{{3\pi } \over 4},{{3\pi } \over 2},{{7\pi } \over 4}} \right\}$$. Let $$y = y(x)$$, x $$\in$$ S, be the solution curve of the differential equation $${{dy} \over {dx}} = {1 \over {1 + \sin 2x}},\,y\left( {{\pi \over 4}} \right) = {1 \over 2}$$. If the sum of abscissas of all the points of intersection of the curve y = y(x) with the curve $$y = \sqrt 2 \sin x$$ is $${{k\pi } \over {12}}$$, then k is equal to _____________.