Let the solution curve $$x=x(y), 0 < y < \frac{\pi}{2}$$, of the differential equation $$\left(\log _{e}(\cos y)\right)^{2} \cos y \mathrm{~d} x-\left(1+3 x \log _{e}(\cos y)\right) \sin \mathrm{y} d y=0$$ satisfy $$x\left(\frac{\pi}{3}\right)=\frac{1}{2 \log _{e} 2}$$. If $$x\left(\frac{\pi}{6}\right)=\frac{1}{\log _{e} m-\log _{e} n}$$, where $$m$$ and $$n$$ are coprime, then $$m n$$ is equal to __________.
If the solution curve of the differential equation $$\left(y-2 \log _{e} x\right) d x+\left(x \log _{e} x^{2}\right) d y=0, x > 1$$ passes through the points $$\left(e, \frac{4}{3}\right)$$ and $$\left(e^{4}, \alpha\right)$$, then $$\alpha$$ is equal to ____________.
Let $$y=y(x)$$ be a solution of the differential equation $$(x \cos x) d y+(x y \sin x+y \cos x-1) d x=0,0 < x < \frac{\pi}{2}$$. If $$\frac{\pi}{3} y\left(\frac{\pi}{3}\right)=\sqrt{3}$$, then $$\left|\frac{\pi}{6} y^{\prime \prime}\left(\frac{\pi}{6}\right)+2 y^{\prime}\left(\frac{\pi}{6}\right)\right|$$ is equal to ____________.
Let $$y=y(x)$$ be the solution curve of the differential equation
$$\sin \left( {2{x^2}} \right){\log _e}\left( {\tan {x^2}} \right)dy + \left( {4xy - 4\sqrt 2 x\sin \left( {{x^2} - {\pi \over 4}} \right)} \right)dx = 0$$, $$0 < x < \sqrt {{\pi \over 2}} $$, which passes through the point $$\left(\sqrt{\frac{\pi}{6}}, 1\right)$$. Then $$\left|y\left(\sqrt{\frac{\pi}{3}}\right)\right|$$ is equal to ______________.