1
JEE Main 2023 (Online) 13th April Evening Shift
Numerical
+4
-1 If $$y=y(x)$$ is the solution of the differential equation

$$\frac{d y}{d x}+\frac{4 x}{\left(x^{2}-1\right)} y=\frac{x+2}{\left(x^{2}-1\right)^{\frac{5}{2}}}, x > 1$$ such that

$$y(2)=\frac{2}{9} \log _{e}(2+\sqrt{3}) \text { and } y(\sqrt{2})=\alpha \log _{e}(\sqrt{\alpha}+\beta)+\beta-\sqrt{\gamma}, \alpha, \beta, \gamma \in \mathbb{N} \text {, then } \alpha \beta \gamma \text { is equal to }$$ :

2
JEE Main 2023 (Online) 10th April Evening Shift
Numerical
+4
-1 Let the tangent at any point P on a curve passing through the points (1, 1) and $$\left(\frac{1}{10}, 100\right)$$, intersect positive $$x$$-axis and $$y$$-axis at the points A and B respectively. If $$\mathrm{PA}: \mathrm{PB}=1: k$$ and $$y=y(x)$$ is the solution of the differential equation $$e^{\frac{d y}{d x}}=k x+\frac{k}{2}, y(0)=k$$, then $$4 y(1)-5 \log _{\mathrm{e}} 3$$ is equal to ____________.

3
JEE Main 2023 (Online) 8th April Evening Shift
Numerical
+4
-1 Let the solution curve $$x=x(y), 0 < y < \frac{\pi}{2}$$, of the differential equation $$\left(\log _{e}(\cos y)\right)^{2} \cos y \mathrm{~d} x-\left(1+3 x \log _{e}(\cos y)\right) \sin \mathrm{y} d y=0$$ satisfy $$x\left(\frac{\pi}{3}\right)=\frac{1}{2 \log _{e} 2}$$. If $$x\left(\frac{\pi}{6}\right)=\frac{1}{\log _{e} m-\log _{e} n}$$, where $$m$$ and $$n$$ are coprime, then $$m n$$ is equal to __________.

4
JEE Main 2023 (Online) 8th April Morning Shift
Numerical
+4
-1 If the solution curve of the differential equation $$\left(y-2 \log _{e} x\right) d x+\left(x \log _{e} x^{2}\right) d y=0, x > 1$$ passes through the points $$\left(e, \frac{4}{3}\right)$$ and $$\left(e^{4}, \alpha\right)$$, then $$\alpha$$ is equal to ____________.

JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination