1
JEE Main 2024 (Online) 8th April Morning Shift
Numerical
+4
-1
Change Language

Let the positive integers be written in the form :

JEE Main 2024 (Online) 8th April Morning Shift Mathematics - Sequences and Series Question 36 English

If the $$k^{\text {th }}$$ row contains exactly $$k$$ numbers for every natural number $$k$$, then the row in which the number 5310 will be, is __________.

Your input ____
2
JEE Main 2024 (Online) 8th April Morning Shift
Numerical
+4
-1
Change Language

Let $$\alpha=\sum_\limits{r=0}^n\left(4 r^2+2 r+1\right){ }^n C_r$$ and $$\beta=\left(\sum_\limits{r=0}^n \frac{{ }^n C_r}{r+1}\right)+\frac{1}{n+1}$$. If $$140<\frac{2 \alpha}{\beta}<281$$, then the value of $$n$$ is _________.

Your input ____
3
JEE Main 2024 (Online) 6th April Evening Shift
Numerical
+4
-1
Change Language

If $$\mathrm{S}(x)=(1+x)+2(1+x)^2+3(1+x)^3+\cdots+60(1+x)^{60}, x \neq 0$$, and $$(60)^2 \mathrm{~S}(60)=\mathrm{a}(\mathrm{b})^{\mathrm{b}}+\mathrm{b}$$, where $$a, b \in N$$, then $$(a+b)$$ equal to _________.

Your input ____
4
JEE Main 2024 (Online) 6th April Morning Shift
Numerical
+4
-1
Change Language

Let the first term of a series be $$T_1=6$$ and its $$r^{\text {th }}$$ term $$T_r=3 T_{r-1}+6^r, r=2,3$$, ............ $$n$$. If the sum of the first $$n$$ terms of this series is $$\frac{1}{5}\left(n^2-12 n+39\right)\left(4 \cdot 6^n-5 \cdot 3^n+1\right)$$, then $$n$$ is equal to ___________.

Your input ____
JEE Main Subjects
EXAM MAP