An arithmetic progression is written in the following way
The sum of all the terms of the 10th row is _________.
Let the positive integers be written in the form :
If the $$k^{\text {th }}$$ row contains exactly $$k$$ numbers for every natural number $$k$$, then the row in which the number 5310 will be, is __________.
Let $$\alpha=\sum_\limits{r=0}^n\left(4 r^2+2 r+1\right){ }^n C_r$$ and $$\beta=\left(\sum_\limits{r=0}^n \frac{{ }^n C_r}{r+1}\right)+\frac{1}{n+1}$$. If $$140<\frac{2 \alpha}{\beta}<281$$, then the value of $$n$$ is _________.
If $$\mathrm{S}(x)=(1+x)+2(1+x)^2+3(1+x)^3+\cdots+60(1+x)^{60}, x \neq 0$$, and $$(60)^2 \mathrm{~S}(60)=\mathrm{a}(\mathrm{b})^{\mathrm{b}}+\mathrm{b}$$, where $$a, b \in N$$, then $$(a+b)$$ equal to _________.