Let $$a_1=b_1=1$$ and $${a_n} = {a_{n - 1}} + (n - 1),{b_n} = {b_{n - 1}} + {a_{n - 1}},\forall n \ge 2$$. If $$S = \sum\limits_{n = 1}^{10} {{{{b_n}} \over {{2^n}}}} $$ and $$T = \sum\limits_{n = 1}^8 {{n \over {{2^{n - 1}}}}} $$, then $${2^7}(2S - T)$$ is equal to ____________.
Let $$\{ {a_k}\} $$ and $$\{ {b_k}\} ,k \in N$$, be two G.P.s with common ratios $${r_1}$$ and $${r_2}$$ respectively such that $${a_1} = {b_1} = 4$$ and $${r_1} < {r_2}$$. Let $${c_k} = {a_k} + {b_k},k \in N$$. If $${c_2} = 5$$ and $${c_3} = {{13} \over 4}$$ then $$\sum\limits_{k = 1}^\infty {{c_k} - (12{a_6} + 8{b_4})} $$ is equal to __________.
Let $$a_1,a_2,a_3,...$$ be a $$GP$$ of increasing positive numbers. If the product of fourth and sixth terms is 9 and the sum of fifth and seventh terms is 24, then $$a_1a_9+a_2a_4a_9+a_5+a_7$$ is equal to __________.
For the two positive numbers $$a,b,$$ if $$a,b$$ and $$\frac{1}{18}$$ are in a geometric progression, while $$\frac{1}{a},10$$ and $$\frac{1}{b}$$ are in an arithmetic progression, then $$16a+12b$$ is equal to _________.