Let $$0 < z < y < x$$ be three real numbers such that $$\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$$ are in an arithmetic progression and $$x, \sqrt{2} y, z$$ are in a geometric progression. If $$x y+y z+z x=\frac{3}{\sqrt{2}} x y z$$ , then $$3(x+y+z)^{2}$$ is equal to ____________.
If
$$(20)^{19}+2(21)(20)^{18}+3(21)^{2}(20)^{17}+\ldots+20(21)^{19}=k(20)^{19}$$,
then $$k$$ is equal to ___________.
The sum of the common terms of the following three arithmetic progressions.
$$3,7,11,15, \ldots ., 399$$,
$$2,5,8,11, \ldots ., 359$$ and
$$2,7,12,17, \ldots ., 197$$,
is equal to _____________.
Let $$a_{1}=8, a_{2}, a_{3}, \ldots, a_{n}$$ be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170 , then the product of its middle two terms is ___________.