Let $$a, b$$ be two non-zero real numbers. If $$p$$ and $$r$$ are the roots of the equation $$x^{2}-8 \mathrm{a} x+2 \mathrm{a}=0$$ and $$\mathrm{q}$$ and s are the roots of the equation $$x^{2}+12 \mathrm{~b} x+6 \mathrm{~b}=0$$, such that $$\frac{1}{\mathrm{p}}, \frac{1}{\mathrm{q}}, \frac{1}{\mathrm{r}}, \frac{1}{\mathrm{~s}}$$ are in A.P., then $$\mathrm{a}^{-1}-\mathrm{b}^{-1}$$ is equal to _____________.
Let $$a_{1}=b_{1}=1, a_{n}=a_{n-1}+2$$ and $$b_{n}=a_{n}+b_{n-1}$$ for every
natural number $$n \geqslant 2$$. Then $$\sum\limits_{n = 1}^{15} {{a_n}.{b_n}} $$ is equal to ___________.
Let for $$f(x) = {a_0}{x^2} + {a_1}x + {a_2},\,f'(0) = 1$$ and $$f'(1) = 0$$. If a0, a1, a2 are in an arithmatico-geometric progression, whose corresponding A.P. has common difference 1 and corresponding G.P. has common ratio 2, then f(4) is equal to _____________.
Let 3, 6, 9, 12, ....... upto 78 terms and 5, 9, 13, 17, ...... upto 59 terms be two series. Then, the sum of the terms common to both the series is equal to ________.