1
JEE Main 2024 (Online) 31st January Evening Shift
Numerical
+4
-1
Change Language

Let the coefficient of $$x^r$$ in the expansion of $$(x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+3)^{n-3}(x+2)^2+\ldots \ldots \ldots .+(x+2)^{n-1}$$ be $$\alpha_r$$. If $$\sum_\limits{r=0}^n \alpha_r=\beta^n-\gamma^n, \beta, \gamma \in \mathbb{N}$$, then the value of $$\beta^2+\gamma^2$$ equals _________.

Your input ____
2
JEE Main 2024 (Online) 31st January Morning Shift
Numerical
+4
-1
Change Language

In the expansion of $$(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$$, the sum of the coefficients of $x^3$ and $$x^{-13}$$ is equal to __________.

Your input ____
3
JEE Main 2024 (Online) 30th January Evening Shift
Numerical
+4
-1
Change Language

Let $$\alpha=\sum_\limits{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$$ and $$\beta=\sum_\limits{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$$ If $$5 \alpha=6 \beta$$, then $$n$$ equals _______.

Your input ____
4
JEE Main 2024 (Online) 30th January Morning Shift
Numerical
+4
-1
Change Language

$$\text { Number of integral terms in the expansion of }\left\{7^{\left(\frac{1}{2}\right)}+11^{\left(\frac{1}{6}\right)}\right\}^{824} \text { is equal to _________. }$$

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12