1
JEE Main 2021 (Online) 26th February Morning Shift
Numerical
+4
-1
Out of Syllabus
Change Language
Let m, n$$\in$$N and gcd (2, n) = 1. If $$30\left( {\matrix{ {30} \cr 0 \cr } } \right) + 29\left( {\matrix{ {30} \cr 1 \cr } } \right) + ...... + 2\left( {\matrix{ {30} \cr {28} \cr } } \right) + 1\left( {\matrix{ {30} \cr {29} \cr } } \right) = n{.2^m}$$, then n + m is equal to __________.

(Here $$\left( {\matrix{ n \cr k \cr } } \right) = {}^n{C_k}$$)
Your input ____
2
JEE Main 2021 (Online) 25th February Evening Shift
Numerical
+4
-1
Change Language
If the remainder when x is divided by 4 is 3, then the remainder when (2020 + x)2022 is divided by 8 is __________.
Your input ____
3
JEE Main 2021 (Online) 25th February Evening Shift
Numerical
+4
-1
Change Language
The total number of two digit numbers 'n', such that 3n + 7n is a multiple of 10, is __________.
Your input ____
4
JEE Main 2021 (Online) 24th February Evening Shift
Numerical
+4
-1
Out of Syllabus
Change Language
For integers n and r, let $$\left( {\matrix{ n \cr r \cr } } \right) = \left\{ {\matrix{ {{}^n{C_r},} & {if\,n \ge r \ge 0} \cr {0,} & {otherwise} \cr } } \right.$$ The maximum value of k for which the sum $$\sum\limits_{i = 0}^k {\left( {\matrix{ {10} \cr i \cr } } \right)\left( {\matrix{ {15} \cr {k - i} \cr } } \right)} + \sum\limits_{i = 0}^{k + 1} {\left( {\matrix{ {12} \cr i \cr } } \right)\left( {\matrix{ {13} \cr {k + 1 - i} \cr } } \right)} $$ exists, is equal to _________.
Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12