If the constant term in the expansion of $$\left(1+2 x-3 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$$ is $$\mathrm{p}$$, then $$108 \mathrm{p}$$ is equal to ________.
Let $$a=1+\frac{{ }^2 \mathrm{C}_2}{3 !}+\frac{{ }^3 \mathrm{C}_2}{4 !}+\frac{{ }^4 \mathrm{C}_2}{5 !}+...., \mathrm{b}=1+\frac{{ }^1 \mathrm{C}_0+{ }^1 \mathrm{C}_1}{1 !}+\frac{{ }^2 \mathrm{C}_0+{ }^2 \mathrm{C}_1+{ }^2 \mathrm{C}_2}{2 !}+\frac{{ }^3 \mathrm{C}_0+{ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3}{3 !}+....$$ Then $$\frac{2 b}{a^2}$$ is equal to _________.
Let the coefficient of $$x^r$$ in the expansion of $$(x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+3)^{n-3}(x+2)^2+\ldots \ldots \ldots .+(x+2)^{n-1}$$ be $$\alpha_r$$. If $$\sum_\limits{r=0}^n \alpha_r=\beta^n-\gamma^n, \beta, \gamma \in \mathbb{N}$$, then the value of $$\beta^2+\gamma^2$$ equals _________.