Let $$A = \sum\limits_{i = 1}^{10} {\sum\limits_{j = 1}^{10} {\min \,\{ i,j\} } } $$ and $$B = \sum\limits_{i = 1}^{10} {\sum\limits_{j = 1}^{10} {\max \,\{ i,j\} } } $$. Then A + B is equal to _____________.
If the sum of the co-efficient of all the positive even powers of x in the binomial expansion of $${\left( {2{x^3} + {3 \over x}} \right)^{10}}$$ is $${5^{10}} - \beta \,.\,{3^9}$$, then $$\beta$$ is equal to ____________.
Let Cr denote the binomial coefficient of xr in the expansion of $${(1 + x)^{10}}$$. If for $$\alpha$$, $$\beta$$ $$\in$$ R, $${C_1} + 3.2{C_2} + 5.3{C_3} + $$ ....... upto 10 terms $$ = {{\alpha \times {2^{11}}} \over {{2^\beta } - 1}}\left( {{C_0} + {{{C_1}} \over 2} + {{{C_2}} \over 3} + \,\,.....\,\,upto\,10\,terms} \right)$$ then the value of $$\alpha$$ + $$\beta$$ is equal to ___________.