If $$1 + (2 + {}^{49}{C_1} + {}^{49}{C_2} + \,\,...\,\, + \,\,{}^{49}{C_{49}})({}^{50}{C_2} + {}^{50}{C_4} + \,\,...\,\, + \,\,{}^{50}{C_{50}})$$ is equal to $$2^{\mathrm{n}} \cdot \mathrm{m}$$, where $$\mathrm{m}$$ is odd, then $$\mathrm{n}+\mathrm{m}$$ is equal to __________.
Let for the $$9^{\text {th }}$$ term in the binomial expansion of $$(3+6 x)^{\mathrm{n}}$$, in the increasing powers of $$6 x$$, to be the greatest for $$x=\frac{3}{2}$$, the least value of $$\mathrm{n}$$ is $$\mathrm{n}_{0}$$. If $$\mathrm{k}$$ is the ratio of the coefficient of $$x^{6}$$ to the coefficient of $$x^{3}$$, then $$\mathrm{k}+\mathrm{n}_{0}$$ is equal to :
If the coefficients of $$x$$ and $$x^{2}$$ in the expansion of $$(1+x)^{\mathrm{p}}(1-x)^{\mathrm{q}}, \mathrm{p}, \mathrm{q} \leq 15$$, are $$-3$$ and $$-5$$ respectively, then the coefficient of $$x^{3}$$ is equal to _____________.
If the maximum value of the term independent of $$t$$ in the expansion of $$\left(\mathrm{t}^{2} x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{\mathrm{t}}\right)^{15}, x \geqslant 0$$, is $$\mathrm{K}$$, then $$8 \mathrm{~K}$$ is equal to ____________.