NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

AIEEE 2003

MCQ (Single Correct Answer)
If in a $$\Delta ABC$$ $$a{\cos ^2}\left( {{C \over 2}} \right) + {\cos ^2}\left( {{A \over 2}} \right) = {{3b} \over 2},$$ then the sides $$a, b$$ and $$c$$
A
satisfy $$a+b=c$$
B
are in A.P
C
are in G.P
D
are in H.P

Explanation

If $$a\,{\cos ^2}\left( {{C \over 2}} \right) + c\,{\cos ^2}\left( {{A \over 2}} \right) = {{3b} \over 2}$$

$$a\left[ {\cos C + 1} \right] + c\left[ {\cos A + 1} \right] = 3b$$

$$\left( {a + c} \right) + \left( {a\cos C + c\cos \,B} \right) = 3b$$

$$a + c + b = 3b$$ or $$a + c = 2b$$

or $$a,b,c$$ are in $$A.P.$$
2

AIEEE 2003

MCQ (Single Correct Answer)
In a triangle $$ABC$$, medians $$AD$$ and $$BE$$ are drawn. If $$AD=4$$,
$$\angle DAB = {\pi \over 6}$$ and $$\angle ABE = {\pi \over 3}$$, then the area of the $$\angle \Delta ABC$$ is
A
$${{64} \over 3}$$
B
$${8 \over 3}$$
C
$${{16} \over 3}$$
D
$${{32} \over {3\sqrt 3 }}$$

Explanation



$$AP = {2 \over 3}AD = {8 \over 3};\,\,PD = {4 \over 3};\,\,$$

Let $$PB=x$$

$$\tan {60^ \circ } = {{8/3} \over x}$$

or $$x = {8 \over {3\sqrt 3 }}$$

Area of $$\Delta ABD$$

$$ = {1 \over 2} \times 4 \times {8 \over {3\sqrt 3 }} = {{16} \over {3\sqrt 3 }}$$

$$\therefore$$ Area of $$\Delta ABC$$

$$ = 2 \times {{16} \over {3\sqrt 3 }} = {{32} \over {3\sqrt 3 }}$$

$$\left[ \, \right.$$ As median of a $$\Delta $$ divides it into two $$\Delta 's$$ of equal area. $$\left. \, \right]$$
3

AIEEE 2003

MCQ (Single Correct Answer)
The sum of the radii of inscribed and circumscribed circles for an $$n$$ sided regular polygon of side $$a, $$ is
A
$${a \over 4}\cot \left( {{\pi \over {2n}}} \right)$$
B
$$a\cot \left( {{\pi \over {n}}} \right)$$
C
$${a \over 2}\cot \left( {{\pi \over {2n}}} \right)$$
D
$$a\cot \left( {{\pi \over {2n}}} \right)$$

Explanation

$$\tan \left( {{\pi \over n}} \right) = {a \over {2r}};\,\,\sin \left( {{\pi \over n}} \right) = {a \over {2R}}$$

$$r + R = {a \over 2}\left[ {\cot {\pi \over n} + \cos ec{\pi \over n}} \right]$$


$$ = {a \over 2}\left[ {{{\cos {\pi \over n} + 1} \over {\sin {\pi \over n}}}} \right]$$

$$ = {a \over 2}\left[ {{{2{{\cos }^2}{\pi \over {2n}}} \over {2\sin {\pi \over {2n}}\cos {\pi \over {2n}}}}} \right]$$

$$ = {a \over 2}\cot {\pi \over {2\pi }}$$
4

AIEEE 2002

MCQ (Single Correct Answer)
In a triangle with sides $$a, b, c,$$ $${r_1} > {r_2} > {r_3}$$ (which are the ex-radii) then
A
$$a>b>c$$
B
$$a < b < c$$
C
$$a > b$$ and $$b < c$$
D
$$a < b$$ and $$b > c$$

Explanation

$${r_1} > {r_2} > {r_3}$$

$$ \Rightarrow {\Delta \over {s - a}} > {\Delta \over {s - b}} > {\Delta \over {s - c}};$$

$$ \Rightarrow s - a < s - b < s - c$$

$$ \Rightarrow - a < - b < - c$$

$$ \Rightarrow a > b > c$$

Questions Asked from Properties of Triangle

On those following papers in MCQ (Single Correct Answer)
Number in Brackets after Paper Indicates No. of Questions
JEE Main 2022 (Online) 27th July Morning Shift (1)
JEE Main 2022 (Online) 25th July Morning Shift (1)
JEE Main 2022 (Online) 29th June Evening Shift (1)
JEE Main 2022 (Online) 28th June Morning Shift (1)
JEE Main 2022 (Online) 27th June Morning Shift (1)
JEE Main 2021 (Online) 31st August Morning Shift (1)
JEE Main 2021 (Online) 27th August Evening Shift (1)
JEE Main 2021 (Online) 27th August Morning Shift (1)
JEE Main 2021 (Online) 26th August Evening Shift (1)
JEE Main 2021 (Online) 25th July Morning Shift (1)
JEE Main 2021 (Online) 20th July Evening Shift (1)
JEE Main 2021 (Online) 20th July Morning Shift (1)
JEE Main 2021 (Online) 18th March Evening Shift (1)
JEE Main 2021 (Online) 26th February Evening Shift (1)
JEE Main 2021 (Online) 25th February Morning Shift (1)
JEE Main 2021 (Online) 24th February Evening Shift (1)
JEE Main 2021 (Online) 24th February Morning Shift (1)
JEE Main 2020 (Online) 6th September Evening Slot (1)
JEE Main 2020 (Online) 4th September Evening Slot (1)
JEE Main 2020 (Online) 4th September Morning Slot (1)
JEE Main 2019 (Online) 12th April Evening Slot (1)
JEE Main 2019 (Online) 10th April Evening Slot (1)
JEE Main 2019 (Online) 10th April Morning Slot (1)
JEE Main 2019 (Online) 9th April Evening Slot (1)
JEE Main 2019 (Online) 8th April Evening Slot (2)
JEE Main 2019 (Online) 12th January Evening Slot (1)
JEE Main 2019 (Online) 11th January Evening Slot (1)
JEE Main 2019 (Online) 11th January Morning Slot (1)
JEE Main 2019 (Online) 10th January Evening Slot (1)
JEE Main 2019 (Online) 10th January Morning Slot (1)
JEE Main 2018 (Online) 16th April Morning Slot (1)
JEE Main 2018 (Online) 15th April Evening Slot (1)
JEE Main 2018 (Online) 15th April Morning Slot (1)
JEE Main 2016 (Online) 10th April Morning Slot (1)
JEE Main 2015 (Offline) (1)
JEE Main 2014 (Offline) (1)
AIEEE 2010 (1)
AIEEE 2008 (1)
AIEEE 2007 (1)
AIEEE 2005 (2)
AIEEE 2004 (2)
AIEEE 2003 (3)
AIEEE 2002 (2)

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12