1
AIEEE 2003
+4
-1
A thin spherical conducting shell of radius $$R$$ has a charge $$q.$$ Another charge $$Q$$ is placed at the center of the shell. The electrostatic potential at a point $$P$$ a distance $${R \over 2}$$ from the center of the shell is
A
$${{2Q} \over {4\pi {\varepsilon _0}R}}$$
B
$${{2Q} \over {4\pi {\varepsilon _0}R}} - {{2q} \over {4\pi {\varepsilon _0}R}}$$
C
$${{2Q} \over {4\pi {\varepsilon _0}R}} + {q \over {4\pi {\varepsilon _0}R}}$$
D
$${{\left( {q + Q} \right)2} \over {4\pi {\varepsilon _0}R}}$$
2
AIEEE 2003
+4
-1
Three charges $$- {q_1}, + {q_2}$$ and $$- {q_3}$$ are placed as shown in the figure. The $$x$$-component of the force on $$- {q_1}$$ is proportional to
A
$${{{q_2}} \over {{b^2}}} - {{{q_3}} \over {{a^2}}}\cos \theta$$
B
$${{{q_2}} \over {{b^2}}} + {{{q_3}} \over {{a^2}}}\sin \theta$$
C
$${{{q_2}} \over {{b^2}}} + {{{q_3}} \over {{a^2}}}\cos \theta$$
D
$${{{q_2}} \over {{b^2}}} - {{{q_3}} \over {{a^2}}}sin\theta$$
3
AIEEE 2002
+4
-1
On moving a charge of $$20$$ coulomb by $$2$$ $$cm,$$ $$2$$ $$J$$ of work is done, then the potential differences between the points is
A
$$0.1$$ $$V$$
B
$$8$$ $$V$$
C
$$2V$$
D
$$0.5$$ $$V.$$
4
AIEEE 2002
+4
-1
A charged particle $$q$$ is placed at the centre $$O$$ of cube of length $$L(ABCDEFGH).$$ Another same charge $$q$$ is placed at a distance $$L$$ from $$O$$. Then the electric flux through $$ABCD$$ is
A
$$q/4\,\pi \,{ \in _0}L$$
B
zero
C
$$q/2\,\pi \,{ \in _0}L$$
D
$$q/3\,\pi \,{ \in _0}L$$
EXAM MAP
Medical
NEET