Consider the following sequence of reactions:
11.25 mg of chlorobenzene will produce ___________$\times 10^{-1} \mathrm{mg}$ of product B.
(Consider the reactions result in complete conversion.)
[Given molar mass of $\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N}$ and Cl as $12,1,16,14$ and $35.5 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively]
The molarity of a $70 \%$ (mass/mass) aqueous solution of a monobasic acid (X) is _________ $\times 10^{-1}$ M (Nearest integer)
[Given: Density of aqueous solution of (X) is $1.25 \mathrm{~g} \mathrm{~mL}^{-1}$
Molar mass of the acid is $70 \mathrm{~g} \mathrm{~mol}^{-1}$ ]
Given below is the plot of the molar conductivity vs $\sqrt{\text { concentration }}$ for KCl in aqueous solution.
If, for the higher concentration of KCl solution, the resistance of the conductivity cell is $100 \Omega$, then the resistance of the same cell with the dilute solution is ' x ' $\Omega$
The value of $x$ is _________ (Nearest integer)
Quantitative analysis of an organic compound (X) shows following % composition.
C : $14.5 \%$
Cl : 64.46%
H: 1.8 %
(Empirical formula mass of the compound $(\mathrm{X})$ is _________ $\times 10^{-1}$
(Given molar mass in $\mathrm{g} \mathrm{~mol}^{-1}$ of $\mathrm{C}: 12, \mathrm{H}: 1, \mathrm{O}: 16, \mathrm{Cl}: 35.5$)