Let $\mathrm{T}_{\mathrm{r}}$ be the $\mathrm{r}^{\text {th }}$ term of an A.P. If for some $\mathrm{m}, \mathrm{T}_{\mathrm{m}}=\frac{1}{25}, \mathrm{~T}_{25}=\frac{1}{20}$, and $20 \sum\limits_{\mathrm{r}=1}^{25} \mathrm{~T}_{\mathrm{r}}=13$, then $5 \mathrm{~m} \sum\limits_{\mathrm{r}=\mathrm{m}}^{2 \mathrm{~m}} \mathrm{~T}_{\mathrm{r}}$ is equal to
Let ${ }^n C_{r-1}=28,{ }^n C_r=56$ and ${ }^n C_{r+1}=70$. Let $A(4 \operatorname{cost}, 4 \sin t), B(2 \sin t,-2 \cos t)$ and $C\left(3 r-n, r^2-n-1\right)$ be the vertices of a triangle $A B C$, where $t$ is a parameter. If $(3 x-1)^2+(3 y)^2$ $=\alpha$, is the locus of the centroid of triangle ABC , then $\alpha$ equals
Two number $\mathrm{k}_1$ and $\mathrm{k}_2$ are randomly chosen from the set of natural numbers. Then, the probability that the value of $\mathrm{i}^{\mathrm{k}_1}+\mathrm{i}^{\mathrm{k}_2},(\mathrm{i}=\sqrt{-1})$ is non-zero, equals
Three defective oranges are accidently mixed with seven good ones and on looking at them, it is not possible to differentiate between them. Two oranges are drawn at random from the lot. If $x$ denote the number of defective oranges, then the variance of $x$ is