Let $\left\langle a_{\mathrm{n}}\right\rangle$ be a sequence such that $a_0=0, a_1=\frac{1}{2}$ and $2 a_{\mathrm{n}+2}=5 a_{\mathrm{n}+1}-3 a_{\mathrm{n}}, \mathrm{n}=0,1,2,3, \ldots$. Then $\sum\limits_{k=1}^{100} a_k$ is equal to
$\cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{33}{65}\right)$ is equal to:
If $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{96 x^2 \cos ^2 x}{\left(1+e^x\right)} \mathrm{d} x=\pi\left(\alpha \pi^2+\beta\right), \alpha, \beta \in \mathbb{Z}$, then $(\alpha+\beta)^2$ equals
Let $\mathrm{T}_{\mathrm{r}}$ be the $\mathrm{r}^{\text {th }}$ term of an A.P. If for some $\mathrm{m}, \mathrm{T}_{\mathrm{m}}=\frac{1}{25}, \mathrm{~T}_{25}=\frac{1}{20}$, and $20 \sum\limits_{\mathrm{r}=1}^{25} \mathrm{~T}_{\mathrm{r}}=13$, then $5 \mathrm{~m} \sum\limits_{\mathrm{r}=\mathrm{m}}^{2 \mathrm{~m}} \mathrm{~T}_{\mathrm{r}}$ is equal to