The sum of all local minimum values of the function
$$\mathrm{f}(x)=\left\{\begin{array}{lr} 1-2 x, & x<-1 \\ \frac{1}{3}(7+2|x|), & -1 \leq x \leq 2 \\ \frac{11}{18}(x-4)(x-5), & x>2 \end{array}\right.$$
is
The number of different 5 digit numbers greater than 50000 that can be formed using the digits 0 , $1,2,3,4,5,6,7$, such that the sum of their first and last digits should not be more than 8 , is
Let the equation of the circle, which touches $x$-axis at the point $(a, 0), a>0$ and cuts off an intercept of length $b$ on $y-a x i s$ be $x^2+y^2-\alpha x+\beta y+\gamma=0$. If the circle lies below $x-a x i s$, then the ordered pair $\left(2 a, b^2\right)$ is equal to
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=(2+3 a) x^2+\left(\frac{a+2}{a-1}\right) x+b, a \neq 1$. If $f(x+y)=f(x)+f(\mathrm{y})+1-\frac{2}{7} x \mathrm{y}$, then the value of $28 \sum\limits_{i=1}^5|f(i)|$ is