Let $\mathrm{f}(x)=\left\{\begin{array}{lc}3 x, & x<0 \\ \min \{1+x+[x], x+2[x]\}, & 0 \leq x \leq 2 \\ 5, & x>2\end{array}\right.$
where [.] denotes greatest integer function. If $\alpha$ and $\beta$ are the number of points, where $f$ is not continuous and is not differentiable, respectively, then $\alpha+\beta$ equals _______ .
If $\alpha=1+\sum\limits_{r=1}^6(-3)^{r-1} \quad{ }^{12} \mathrm{C}_{2 r-1}$, then the distance of the point $(12, \sqrt{3})$ from the line $\alpha x-\sqrt{3} y+1=0$ is ________.
Let $\mathrm{E}_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ be an ellipse. Ellipses $\mathrm{E}_{\mathrm{i}}$ 's are constructed such that their centres and eccentricities are same as that of $\mathrm{E}_1$, and the length of minor axis of $\mathrm{E}_{\mathrm{i}}$ is the length of major axis of $E_{i+1}(i \geq 1)$. If $A_i$ is the area of the ellipse $E_i$, then $\frac{5}{\pi}\left(\sum\limits_{i=1}^{\infty} A_i\right)$, is equal to _______.
Let $\vec{a}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{d}}=\vec{a} \times \overrightarrow{\mathrm{b}}$. If $\overrightarrow{\mathrm{c}}$ is a vector such that $\vec{a} \cdot \overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{c}}|$, $|\overrightarrow{\mathrm{c}}-2 \vec{a}|^2=8$ and the angle between $\overrightarrow{\mathrm{d}}$ and $\overrightarrow{\mathrm{c}}$ is $\frac{\pi}{4}$, then $|10-3 \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}}|+|\overrightarrow{\mathrm{d}} \times \overrightarrow{\mathrm{c}}|^2$ is equal to _________.