1
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The area (in sq. units) of the region $\left\{(x, \mathrm{y}): 0 \leq \mathrm{y} \leq 2|x|+1,0 \leq \mathrm{y} \leq x^2+1,|x| \leq 3\right\}$ is

A
$\frac{32}{3}$
B
$\frac{64}{3}$
C
$\frac{17}{3}$
D
$\frac{80}{3}$
2
JEE Main 2025 (Online) 28th January Morning Shift
Numerical
+4
-1
Change Language

Let M denote the set of all real matrices of order $3 \times 3$ and let $\mathrm{S}=\{-3,-2,-1,1,2\}$. Let

$$\begin{aligned} & \mathrm{S}_1=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: \mathrm{A}=\mathrm{A}^{\mathrm{T}} \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\}, \\ & \mathrm{S}_2=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: \mathrm{A}=-\mathrm{A}^{\mathrm{T}} \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\}, \\ & \mathrm{S}_3=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: a_{11}+a_{22}+a_{33}=0 \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\} . \end{aligned}$$

If $n\left(S_1 \cup S_2 \cup S_3\right)=125 \alpha$, then $\alpha$ equls __________.

Your input ____
3
JEE Main 2025 (Online) 28th January Morning Shift
Numerical
+4
-1
Change Language

Let $\mathrm{f}(x)=\left\{\begin{array}{lc}3 x, & x<0 \\ \min \{1+x+[x], x+2[x]\}, & 0 \leq x \leq 2 \\ 5, & x>2\end{array}\right.$

where [.] denotes greatest integer function. If $\alpha$ and $\beta$ are the number of points, where $f$ is not continuous and is not differentiable, respectively, then $\alpha+\beta$ equals _______ .

Your input ____
4
JEE Main 2025 (Online) 28th January Morning Shift
Numerical
+4
-1
Change Language

If $\alpha=1+\sum\limits_{r=1}^6(-3)^{r-1} \quad{ }^{12} \mathrm{C}_{2 r-1}$, then the distance of the point $(12, \sqrt{3})$ from the line $\alpha x-\sqrt{3} y+1=0$ is ________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP