1
JEE Main 2025 (Online) 28th January Morning Shift
Numerical
+4
-1
Change Language

If $\alpha=1+\sum\limits_{r=1}^6(-3)^{r-1} \quad{ }^{12} \mathrm{C}_{2 r-1}$, then the distance of the point $(12, \sqrt{3})$ from the line $\alpha x-\sqrt{3} y+1=0$ is ________.

Your input ____
2
JEE Main 2025 (Online) 28th January Morning Shift
Numerical
+4
-1
Change Language

Let $\mathrm{E}_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ be an ellipse. Ellipses $\mathrm{E}_{\mathrm{i}}$ 's are constructed such that their centres and eccentricities are same as that of $\mathrm{E}_1$, and the length of minor axis of $\mathrm{E}_{\mathrm{i}}$ is the length of major axis of $E_{i+1}(i \geq 1)$. If $A_i$ is the area of the ellipse $E_i$, then $\frac{5}{\pi}\left(\sum\limits_{i=1}^{\infty} A_i\right)$, is equal to _______.

Your input ____
3
JEE Main 2025 (Online) 28th January Morning Shift
Numerical
+4
-1
Change Language

Let $\vec{a}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{d}}=\vec{a} \times \overrightarrow{\mathrm{b}}$. If $\overrightarrow{\mathrm{c}}$ is a vector such that $\vec{a} \cdot \overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{c}}|$, $|\overrightarrow{\mathrm{c}}-2 \vec{a}|^2=8$ and the angle between $\overrightarrow{\mathrm{d}}$ and $\overrightarrow{\mathrm{c}}$ is $\frac{\pi}{4}$, then $|10-3 \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}}|+|\overrightarrow{\mathrm{d}} \times \overrightarrow{\mathrm{c}}|^2$ is equal to _________.

Your input ____
4
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A bead of mass ' $m$ ' slides without friction on the wall of a vertical circular hoop of radius ' $R$ ' as shown in figure. The bead moves under the combined action of gravity and a massless spring (k) attached to the bottom of the hoop. The equilibrium length of the spring is ' $R$ '. If the bead is released from top of the hoop with (negligible) zero initial speed, velocity of bead, when the length of spring becomes ' $R$ ', would be (spring constant is ' $k$ ', $g$ is accleration due to gravity)

JEE Main 2025 (Online) 28th January Morning Shift Physics - Work Power & Energy Question 1 English

A
$\sqrt{2 R g+\frac{\mathrm{kR}^2}{\mathrm{~m}}}$
B
$\sqrt{3 \mathrm{Rg}+\frac{\mathrm{kR}^2}{\mathrm{~m}}}$
C
$\sqrt{2 \mathrm{Rg}+\frac{4 \mathrm{kR}^2}{\mathrm{~m}}}$
D
$2\sqrt{\mathrm{gR}+\frac{\mathrm{kR}^2}{\mathrm{~m}}}$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12