Let M denote the set of all real matrices of order $3 \times 3$ and let $\mathrm{S}=\{-3,-2,-1,1,2\}$. Let
$$\begin{aligned} & \mathrm{S}_1=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: \mathrm{A}=\mathrm{A}^{\mathrm{T}} \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\}, \\ & \mathrm{S}_2=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: \mathrm{A}=-\mathrm{A}^{\mathrm{T}} \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\}, \\ & \mathrm{S}_3=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: a_{11}+a_{22}+a_{33}=0 \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\} . \end{aligned}$$
If $n\left(S_1 \cup S_2 \cup S_3\right)=125 \alpha$, then $\alpha$ equls __________.
Let $\mathrm{f}(x)=\left\{\begin{array}{lc}3 x, & x<0 \\ \min \{1+x+[x], x+2[x]\}, & 0 \leq x \leq 2 \\ 5, & x>2\end{array}\right.$
where [.] denotes greatest integer function. If $\alpha$ and $\beta$ are the number of points, where $f$ is not continuous and is not differentiable, respectively, then $\alpha+\beta$ equals _______ .
If $\alpha=1+\sum\limits_{r=1}^6(-3)^{r-1} \quad{ }^{12} \mathrm{C}_{2 r-1}$, then the distance of the point $(12, \sqrt{3})$ from the line $\alpha x-\sqrt{3} y+1=0$ is ________.
Let $\mathrm{E}_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ be an ellipse. Ellipses $\mathrm{E}_{\mathrm{i}}$ 's are constructed such that their centres and eccentricities are same as that of $\mathrm{E}_1$, and the length of minor axis of $\mathrm{E}_{\mathrm{i}}$ is the length of major axis of $E_{i+1}(i \geq 1)$. If $A_i$ is the area of the ellipse $E_i$, then $\frac{5}{\pi}\left(\sum\limits_{i=1}^{\infty} A_i\right)$, is equal to _______.