1
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1

If the system of equations

$$\begin{aligned} & 2 x-y+z=4 \\ & 5 x+\lambda y+3 z=12 \\ & 100 x-47 y+\mu z=212 \end{aligned}$$

has infinitely many solutions, then $\mu-2 \lambda$ is equal to

A
56
B
59
C
57
D
55
2
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let circle $C$ be the image of $x^2+y^2-2 x+4 y-4=0$ in the line $2 x-3 y+5=0$ and $A$ be the point on $C$ such that $O A$ is parallel to $x$-axis and $A$ lies on the right hand side of the centre $O$ of $C$. If $B(\alpha, \beta)$, with $\beta<4$, lies on $C$ such that the length of the arc $A B$ is $(1 / 6)^{\text {th }}$ of the perimeter of $C$, then $\beta-\sqrt{3} \alpha$ is equal to

A
$4-\sqrt{3}$
B
 $3$
C
$4$
D
$3+\sqrt{3}$
3
JEE Main 2025 (Online) 24th January Morning Shift
Numerical
+4
-1

Let A be a $3 \times 3$ matrix such that $\mathrm{X}^{\mathrm{T}} \mathrm{AX}=\mathrm{O}$ for all nonzero $3 \times 1$ matrices $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. If $\mathrm{A}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ 4 \\ -5\end{array}\right], \mathrm{A}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 4 \\ -8\end{array}\right]$, and $\operatorname{det}(\operatorname{adj}(2(\mathrm{~A}+\mathrm{I})))=2^\alpha 3^\beta 5^\gamma, \alpha, \beta, \gamma \in N$, then $\alpha^2+\beta^2+\gamma^2$ is

Your input ____
4
JEE Main 2025 (Online) 24th January Morning Shift
Numerical
+4
-1

Let $f$ be a differentiable function such that $2(x+2)^2 f(x)-3(x+2)^2=10 \int_0^x(t+2) f(t) d t, x \geq 0$. Then $f(2)$ is equal to ________ .

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12