For a statistical data $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$ of 10 values, a student obtained the mean as 5.5 and $\sum_{i=1}^{10} x_i^2=371$. He later found that he had noted two values in the data incorrectly as 4 and 5 , instead of the correct values 6 and 8 , respectively. The variance of the corrected data is
Let the lines $3 x-4 y-\alpha=0,8 x-11 y-33=0$, and $2 x-3 y+\lambda=0$ be concurrent. If the image of the point $(1,2)$ in the line $2 x-3 y+\lambda=0$ is $\left(\frac{57}{13}, \frac{-40}{13}\right)$, then $|\alpha \lambda|$ is equal to
If the system of equations
$$\begin{aligned} & 2 x-y+z=4 \\ & 5 x+\lambda y+3 z=12 \\ & 100 x-47 y+\mu z=212 \end{aligned}$$
has infinitely many solutions, then $\mu-2 \lambda$ is equal to
Let circle $C$ be the image of $x^2+y^2-2 x+4 y-4=0$ in the line $2 x-3 y+5=0$ and $A$ be the point on $C$ such that $O A$ is parallel to $x$-axis and $A$ lies on the right hand side of the centre $O$ of $C$. If $B(\alpha, \beta)$, with $\beta<4$, lies on $C$ such that the length of the arc $A B$ is $(1 / 6)^{\text {th }}$ of the perimeter of $C$, then $\beta-\sqrt{3} \alpha$ is equal to