Consider a parallel plate capacitor of area A (of each plate) and separation ' $d$ ' between the plates. If $E$ is the electric field and $\varepsilon_0$ is the permittivity of free space between the plates, then potential energy stored in the capacitor is
A force $\mathrm{F}=\alpha+\beta \mathrm{x}^2$ acts on an object in the x -direction. The work done by the force is 5 J when the object is displaced by 1 m . If the constant $\alpha=1 \mathrm{~N}$ then $\beta$ will be
Consider the following statements :
A. The junction area of solar cell is made very narrow compared to a photo diode.
B. Solar cells are not connected with any external bias.
C. LED is made of lightly doped p-n junction.
D. Increase of forward current results in continuous increase of LED light intensity.
E. LEDs have to be connected in forward bias for emission of light.
Choose the correct answer from the options given below :
A parallel plate capacitor was made with two rectangular plates, each with a length of $l=3 \mathrm{~cm}$ and breath of $\mathrm{b}=1 \mathrm{~cm}$. The distance between the plates is $3 \mu \mathrm{~m}$. Out of the following, which are the ways to increase the capacitance by a factor of 10 ?
A. $l=30 \mathrm{~cm}, \mathrm{~b}=1 \mathrm{~cm}, \mathrm{~d}=1 \mu \mathrm{~m}$
B. $l=3 \mathrm{~cm}, \mathrm{~b}=1 \mathrm{~cm}, \mathrm{~d}=30 \mu \mathrm{~m}$
C. $l=6 \mathrm{~cm}, \mathrm{~b}=5 \mathrm{~cm}, \mathrm{~d}=3 \mu \mathrm{~m}$
D. $l=1 \mathrm{~cm}, \mathrm{~b}=1 \mathrm{~cm}, \mathrm{~d}=10 \mu \mathrm{~m}$
E. $l=5 \mathrm{~cm}, \mathrm{~b}=2 \mathrm{~cm}, \mathrm{~d}=1 \mu \mathrm{~m}$
Choose the correct answer from the options given below: