For some $\mathrm{n} \neq 10$, let the coefficients of the 5 th, 6 th and 7 th terms in the binomial expansion of $(1+\mathrm{x})^{\mathrm{n}+4}$ be in A.P. Then the largest coefficient in the expansion of $(1+\mathrm{x})^{\mathrm{n}+4}$ is:
Let $f(x)=\frac{2^{x+2}+16}{2^{2 x+1}+2^{x+4}+32}$. Then the value of $8\left(f\left(\frac{1}{15}\right)+f\left(\frac{2}{15}\right)+\ldots+f\left(\frac{59}{15}\right)\right)$ is equal to
If $I(m, n)=\int_0^1 x^{m-1}(1-x)^{n-1} d x, m, n>0$, then $I(9,14)+I(10,13)$ is
If $\alpha$ and $\beta$ are the roots of the equation $2 z^2-3 z-2 i=0$, where $i=\sqrt{-1}$, then $16 \cdot \operatorname{Re}\left(\frac{\alpha^{19}+\beta^{19}+\alpha^{11}+\beta^{11}}{\alpha^{15}+\beta^{15}}\right) \cdot \operatorname{lm}\left(\frac{\alpha^{19}+\beta^{19}+\alpha^{11}+\beta^{11}}{\alpha^{15}+\beta^{15}}\right)$ is equal to