1
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $I(m, n)=\int_0^1 x^{m-1}(1-x)^{n-1} d x, m, n>0$, then $I(9,14)+I(10,13)$ is

A
$I(9,1)$
B
$I(1,13)$
C
$\mathrm{I}(19,27)$
D
$\mathrm{I}(9,13)$
2
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $\alpha$ and $\beta$ are the roots of the equation $2 z^2-3 z-2 i=0$, where $i=\sqrt{-1}$, then $16 \cdot \operatorname{Re}\left(\frac{\alpha^{19}+\beta^{19}+\alpha^{11}+\beta^{11}}{\alpha^{15}+\beta^{15}}\right) \cdot \operatorname{lm}\left(\frac{\alpha^{19}+\beta^{19}+\alpha^{11}+\beta^{11}}{\alpha^{15}+\beta^{15}}\right)$ is equal to

A
441
B
312
C
409
D
398
3
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the product of the focal distances of the point $\left(\sqrt{3}, \frac{1}{2}\right)$ on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b)$, be $\frac{7}{4}$. Then the absolute difference of the eccentricities of two such ellipses is

A
$\frac{1-2 \sqrt{2}}{\sqrt{3}}$
B
$\frac{1-\sqrt{3}}{\sqrt{2}}$
C
$\frac{3-2 \sqrt{2}}{2 \sqrt{3}}$
D
$\frac{3-2 \sqrt{2}}{3 \sqrt{2}}$
4
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $\left(x y-5 x^2 \sqrt{1+x^2}\right) d x+\left(1+x^2\right) d y=0, y(0)=0$. Then $y(\sqrt{3})$ is equal to

A
$\frac{5 \sqrt{3}}{2}$
B
$\sqrt{\frac{15}{2}}$
C
$\sqrt{\frac{14}{3}}$
D
$2 \sqrt{2}$
JEE Main Papers
2023
2021
EXAM MAP