Let $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}+\hat{j}-\hat{k}$ and $\vec{c}$ be three vectors such that $\vec{c}$ is coplanar with $\vec{a}$ and $\vec{b}$. If the vector $\vec{C}$ is perpendicular to $\vec{b}$ and $\vec{a} \cdot \vec{c}=5$, then $|\vec{c}|$ is equal to
Consider the region $R=\left\{(x, y): x \leq y \leq 9-\frac{11}{3} x^2, x \geq 0\right\}$. The area, of the largest rectangle of sides parallel to the coordinate axes and inscribed in R , is:
The area of the region $\left\{(x, y): x^2+4 x+2 \leq y \leq|x+2|\right\}$ is equal to
Let $S_n=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots$ upto $n$ terms. If the sum of the first six terms of an A.P. with first term -p and common difference p is $\sqrt{2026 \mathrm{~S}_{2025}}$, then the absolute difference betwen $20^{\text {th }}$ and $15^{\text {th }}$ terms of the A.P. is