Let $\left|\frac{\bar{z}-i}{2 \bar{z}+i}\right|=\frac{1}{3}, z \in C$, be the equation of a circle with center at $C$. If the area of the triangle, whose vertices are at the points $(0,0), C$ and $(\alpha, 0)$ is 11 square units, then $\alpha^2$ equals:
Let $\mathrm{I}(x)=\int \frac{d x}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}$. If $\mathrm{I}(37)-\mathrm{I}(24)=\frac{1}{4}\left(\frac{1}{\mathrm{~b}^{\frac{1}{13}}}-\frac{1}{\mathrm{c}^{\frac{1}{13}}}\right), \mathrm{b}, \mathrm{c} \in \mathcal{N}$, then $3(\mathrm{~b}+\mathrm{c})$ is equal to
If the line $3 x-2 y+12=0$ intersects the parabola $4 y=3 x^2$ at the points $A$ and $B$, then at the vertex of the parabola, the line segment AB subtends an angle equal to
If the first term of an A.P. is 3 and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first 20 terms is equal to