The electric field of an electromagnetic wave in free space is $\overrightarrow{\mathrm{E}}=57 \cos \left[7.5 \times 10^6 \mathrm{t}-5 \times 10^{-3}(3 x+4 y)\right](4 \hat{i}-3 \hat{j}) N / C$. The associated magnetic field in Tesla is
The electric flux is $\phi=\alpha \sigma+\beta \lambda$ where $\lambda$ and $\sigma$ are linear and surface charge density, respectively. $\left(\frac{\alpha}{\beta}\right)$ represents
Consider a moving coil galvanomenter (MCG):
A. The torsional constant in moving coil galvanometer has dimentions $\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]$
B. Increasing the current sensitivity may not necessarily increase the voltage sensitivity.
C. If we increase number of turns $(\mathrm{N})$ to its double $(2 \mathrm{~N})$, then the voltage sensitivity doubles.
D. MCG can be converted into an ammeter by introducing a shunt resistance of large value in parallel with galvanometer.
E. Current sensitivity of MCG depends inversely on number of turns of coil.
Choose the correct answer from the options given below:
The motion of an airplane is represented by velocity-time graph as shown below. The distance covered by airplane in the first 30.5 second is ̱_______ km .