1
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let the arc $A C$ of a circle subtend a right angle at the centre $O$. If the point $B$ on the arc $A C$, divides the arc $A C$ such that $\frac{\text { length of } \operatorname{arc} A B}{\text { length of } \operatorname{arc} B C}=\frac{1}{5}$, and $\overrightarrow{O C}=\alpha \overrightarrow{O A}+\beta \overrightarrow{O B}$, then $\alpha+\sqrt{2}(\sqrt{3}-1) \beta$ is equal to

A
$2 \sqrt{3}$
B
$5 \sqrt{3}$
C
$2+\sqrt{3}$
D
$2-\sqrt{3}$
2
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let the area of a $\triangle P Q R$ with vertices $P(5,4), Q(-2,4)$ and $R(a, b)$ be 35 square units. If its orthocenter and centroid are $O\left(2, \frac{14}{5}\right)$ and $C(c, d)$ respectively, then $c+2 d$ is equal to

A
$3$
B
$\frac{7}{3}$
C
$2$
D
$\frac{8}{3}$
3
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1

If $\mathrm{A}, \mathrm{B}, \operatorname{and}\left(\operatorname{adj}\left(\mathrm{A}^{-1}\right)+\operatorname{adj}\left(\mathrm{B}^{-1}\right)\right)$ are non-singular matrices of same order, then the inverse of $A\left(\operatorname{adj}\left(A^{-1}\right)+\operatorname{adj}\left(B^{-1}\right)\right)^{-1} B$, is equal to

A
$\frac{A B^{-1}}{|A|}+\frac{B A^{-1}}{|B|}$
B
$\operatorname{adj}\left(\mathrm{B}^{-1}\right)+\operatorname{adj}\left(\mathrm{A}^{-1}\right)$
C
$\mathrm{AB}^{-1}+\mathrm{A}^{-1} \mathrm{~B}$
D
$\frac{1}{|A B|}(\operatorname{adj}(B)+\operatorname{adj}(A))$
4
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $\mathrm{R}=\{(1,2),(2,3),(3,3)\}$ be a relation defined on the set $\{1,2,3,4\}$. Then the minimum number of elements, needed to be added in R so that R becomes an equivalence relation, is:

A
9
B
8
C
7
D
10
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12