If the system of equations $$ \begin{aligned} & (\lambda-1) x+(\lambda-4) y+\lambda z=5 \\ & \lambda x+(\lambda-1) y+(\lambda-4) z=7 \\ & (\lambda+1) x+(\lambda+2) y-(\lambda+2) z=9 \end{aligned}$$
has infinitely many solutions, then $\lambda^2+\lambda$ is equal to
The value of $\int_{e^2}^{e^4} \frac{1}{x}\left(\frac{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}}{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}+e^{\left(\left(6-\log _e x\right)^2+1\right)^{-1}}}\right) d x$ is
Marks obtains by all the students of class 12 are presented in a freqency distribution with classes of equal width. Let the median of this grouped data be 14 with median class interval 12-18 and median class frequency 12. If the number of students whose marks are less than 12 is 18 , then the total number of students is
Let $\left|\frac{\bar{z}-i}{2 \bar{z}+i}\right|=\frac{1}{3}, z \in C$, be the equation of a circle with center at $C$. If the area of the triangle, whose vertices are at the points $(0,0), C$ and $(\alpha, 0)$ is 11 square units, then $\alpha^2$ equals: