1
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let P be the foot of the perpendicular from the point $\mathrm{Q}(10,-3,-1)$ on the line $\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z+1}{-2}$. Then the area of the right angled triangle $P Q R$, where $R$ is the point $(3,-2,1)$, is

A
 $\sqrt{30}$
B
$9 \sqrt{15}$
C
$3 \sqrt{30}$
D
$8 \sqrt{15}$
2
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1

The number of words, which can be formed using all the letters of the word "DAUGHTER", so that all the vowels never come together, is

A
34000
B
37000
C
35000
D
36000
3
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $f(x)=\log _{\mathrm{e}} x$ and $g(x)=\frac{x^4-2 x^3+3 x^2-2 x+2}{2 x^2-2 x+1}$. Then the domain of $f \circ g$ is

A
$(0, \infty)$
B
$[1, \infty)$
C
$\mathbb{R}$
D
$[0, \infty)$
4
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let the position vectors of the vertices $\mathrm{A}, \mathrm{B}$ and C of a tetrahedron ABCD be $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{k}$ and $2 \hat{i}+\hat{j}-\hat{k}$ respectively. The altitude from the vertex $D$ to the opposite face $A B C$ meets the median line segment through $A$ of the triangle $A B C$ at the point $E$. If the length of $A D$ is $\frac{\sqrt{110}}{3}$ and the volume of the tetrahedron is $\frac{\sqrt{805}}{6 \sqrt{2}}$, then the position vector of E is

A
$\frac{1}{6}(7 \hat{\mathrm{i}}+12 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
B
$\frac{1}{12}(7 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
C
$\frac{1}{6}(12 \hat{i}+12 \hat{j}+\hat{k})$
D
$\frac{1}{2}(\hat{i}+4 \hat{j}+7 \hat{k})$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12