One die has two faces marked 1 , two faces marked 2 , one face marked 3 and one face marked 4 . Another die has one face marked 1 , two faces marked 2 , two faces marked 3 and one face marked 4. The probability of getting the sum of numbers to be 4 or 5 , when both the dice are thrown together, is
The value of $\left(\sin 70^{\circ}\right)\left(\cot 10^{\circ} \cot 70^{\circ}-1\right)$ is
If the function $$ f(x)=\left\{\begin{array}{l} \frac{2}{x}\left\{\sin \left(k_1+1\right) x+\sin \left(k_2-1\right) x\right\}, \quad x<0 \\ 4, \quad x=0 \\ \frac{2}{x} \log _e\left(\frac{2+k_1 x}{2+k_2 x}\right), \quad x>0 \end{array}\right. $$ is continuous at $x=0$, then $k_1^2+k_2^2$ is equal to
If the system of equations $$ \begin{aligned} & (\lambda-1) x+(\lambda-4) y+\lambda z=5 \\ & \lambda x+(\lambda-1) y+(\lambda-4) z=7 \\ & (\lambda+1) x+(\lambda+2) y-(\lambda+2) z=9 \end{aligned}$$
has infinitely many solutions, then $\lambda^2+\lambda$ is equal to