If $\mathrm{A}, \mathrm{B}, \operatorname{and}\left(\operatorname{adj}\left(\mathrm{A}^{-1}\right)+\operatorname{adj}\left(\mathrm{B}^{-1}\right)\right)$ are non-singular matrices of same order, then the inverse of $A\left(\operatorname{adj}\left(A^{-1}\right)+\operatorname{adj}\left(B^{-1}\right)\right)^{-1} B$, is equal to
Let $\mathrm{R}=\{(1,2),(2,3),(3,3)\}$ be a relation defined on the set $\{1,2,3,4\}$. Then the minimum number of elements, needed to be added in R so that R becomes an equivalence relation, is:
The sum of all rational terms in the expansion of $\left(1+2^{1 / 5}+3^{1 / 2}\right)^6$ is equal to _________.
If the set of all values of $a$, for which the equation $5 x^3-15 x-a=0$ has three distinct real roots, is the interval $(\alpha, \beta)$, then $\beta-2 \alpha$ is equal to _________.