The area (in sq. units) of the part of the circle $$x^2+y^2=169$$ which is below the line $$5 x-y=13$$ is $$\frac{\pi \alpha}{2 \beta}-\frac{65}{2}+\frac{\alpha}{\beta} \sin ^{-1}\left(\frac{12}{13}\right)$$, where $$\alpha, \beta$$ are coprime numbers. Then $$\alpha+\beta$$ is equal to __________.
If the mean and variance of the data $$65,68,58,44,48,45,60, \alpha, \beta, 60$$ where $$\alpha> \beta$$, are 56 and 66.2 respectively, then $$\alpha^2+\beta^2$$ is equal to _________.
Equations of two diameters of a circle are $$2 x-3 y=5$$ and $$3 x-4 y=7$$. The line joining the points $$\left(-\frac{22}{7},-4\right)$$ and $$\left(-\frac{1}{7}, 3\right)$$ intersects the circle at only one point $$P(\alpha, \beta)$$. Then, $$17 \beta-\alpha$$ is equal to _________.
A line with direction ratios $$2,1,2$$ meets the lines $$x=y+2=z$$ and $$x+2=2 y=2 z$$ respectively at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$. If the length of the perpendicular from the point $$(1,2,12)$$ to the line $$\mathrm{PQ}$$ is $$l$$, then $$l^2$$ is __________.