1
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider the function $$f:\left[\frac{1}{2}, 1\right] \rightarrow \mathbb{R}$$ defined by $$f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$$. Consider the statements

(I) The curve $$y=f(x)$$ intersects the $$x$$-axis exactly at one point.

(II) The curve $$y=f(x)$$ intersects the $$x$$-axis at $$x=\cos \frac{\pi}{12}$$.

Then

A
Both (I) and (II) are correct.
B
Only (I) is correct.
C
Both (I) and (II) are incorrect.
D
Only (II) is correct.
2
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$P Q R$$ be a triangle with $$R(-1,4,2)$$. Suppose $$M(2,1,2)$$ is the mid point of $$\mathrm{PQ}$$. The distance of the centroid of $$\triangle \mathrm{PQR}$$ from the point of intersection of the lines $$\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}$$ and $$\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}$$ is

A
69
B
$$\sqrt{99}$$
C
$$\sqrt{69}$$
D
9
3
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{1 \over {{{\left( {x - {\pi \over 2}} \right)}^2}}}\int\limits_{{x^3}}^{{{\left( {{\pi \over 2}} \right)}^3}} {\cos \left( {{t^{{1 \over 3}}}} \right)dt} } \right)$$ is equal to

A
$$\frac{3 \pi^2}{4}$$
B
$$\frac{3 \pi^2}{8}$$
C
$$\frac{3 \pi}{4}$$
D
$$\frac{3 \pi}{8}$$
4
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A function $$y=f(x)$$ satisfies $$f(x) \sin 2 x+\sin x-\left(1+\cos ^2 x\right) f^{\prime}(x)=0$$ with condition $$f(0)=0$$. Then, $$f\left(\frac{\pi}{2}\right)$$ is equal to

A
2
B
1
C
$$-$$1
D
0
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12